07 错误处理:如何通过 error、deferred、panic 等处理错误?¶
上节课我为你讲解了结构体和接口,并留了一个小作业,让你自己练习实现有两个方法的接口。现在我就以“人既会走也会跑”为例进行讲解。
首先定义一个接口 WalkRun,它有两个方法 Walk 和 Run,如下面的代码所示:
现在就可以让结构体 person 实现这个接口了,如下所示:
func (p *person) Walk(){
fmt.Printf("%s能走\n",p.name)
}
func (p *person) Run(){
fmt.Printf("%s能跑\n",p.name)
}
关键点在于,让接口的每个方法都实现,也就实现了这个接口。
提示:%s 是占位符,和 p.name 对应,也就是 p.name 的值,具体可以参考 fmt.Printf 函数的文档。
下面进行本节课的讲解。这节课我会带你学习 Go 语言的错误和异常,在我们编写程序的时候,可能会遇到一些问题,该怎么处理它们呢?
错误¶
在 Go 语言中,错误是可以预期的,并且不是非常严重,不会影响程序的运行。对于这类问题,可以用返回错误给调用者的方法,让调用者自己决定如何处理。
error 接口¶
在 Go 语言中,错误是通过内置的 error 接口表示的。它非常简单,只有一个 Error 方法用来返回具体的错误信息,如下面的代码所示:
在下面的代码中,我演示了一个字符串转整数的例子:
_ ch07/main.go _
这里我故意使用了字符串 "a",尝试把它转为整数。我们知道 "a" 是无法转为数字的,所以运行这段程序,会打印出如下错误信息:
这个错误信息就是通过接口 error 返回的。我们来看关于函数 strconv.Atoi 的定义,如下所示:
一般而言,error 接口用于当方法或者函数执行遇到错误时进行返回,而且是第二个返回值。通过这种方式,可以让调用者自己根据错误信息决定如何进行下一步处理。
小提示:因为方法和函数基本上差不多,区别只在于有无接收者,所以以后当我称方法或函数,表达的是一个意思,不会把这两个名字都写出来。
error 工厂函数¶
除了可以使用其他函数,自己定义的函数也可以返回错误信息给调用者,如下面的代码所示:
_ ch07/main.go _
func add(a,b int) (int,error){
if a<0 || b<0 {
return 0,errors.New("a或者b不能为负数")
}else {
return a+b,nil
}
}
add 函数会在 a 或者 b 任何一个为负数的情况下,返回一个错误信息,如果 a、b 都不为负数,错误信息部分会返回 nil,这也是常见的做法。所以调用者可以通过错误信息是否为 nil 进行判断。
下面的 add 函数示例,是使用 errors.New 这个工厂函数生成的错误信息,它接收一个字符串参数,返回一个 error 接口,这些在上节课的结构体和接口部分有过详细介绍,不再赘述。
_ ch07/main.go _
自定义 error¶
你可能会想,上面采用工厂返回错误信息的方式只能传递一个字符串,也就是携带的信息只有字符串,如果想要携带更多信息(比如错误码信息)该怎么办呢?这个时候就需要自定义 error 。
自定义 error 其实就是先自定义一个新类型,比如结构体,然后让这个类型实现 error 接口,如下面的代码所示:
_ ch07/main.go _
type commonError struct {
errorCode int //错误码
errorMsg string //错误信息
}
func (ce *commonError) Error() string{
return ce.errorMsg
}
有了自定义的 error,就可以使用它携带更多的信息,现在我改造上面的例子,返回刚刚自定义的 commonError,如下所示:
_ ch07/main.go _
我通过字面量的方式创建一个 *commonError 返回,其中 errorCode 值为 1,errorMsg 值为 “a 或者 b 不能为负数”。
error 断言¶
有了自定义的 error,并且携带了更多的错误信息后,就可以使用这些信息了。你需要先把返回的 error 接口转换为自定义的错误类型,用到的知识是上节课的类型断言。
下面代码中的 err.(*commonError) 就是类型断言在 error 接口上的应用,也可以称为 error 断言。
_ ch07/main.go _
sum, err := add(-1, 2)
if cm,ok:=err.(*commonError);ok{
fmt.Println("错误代码为:",cm.errorCode,",错误信息为:",cm.errorMsg)
} else {
fmt.Println(sum)
}
如果返回的 ok 为 true,说明 error 断言成功,正确返回了 *commonError 类型的变量 cm,所以就可以像示例中一样使用变量 cm 的 errorCode 和 errorMsg 字段信息了。
错误嵌套¶
Error Wrapping¶
error 接口虽然比较简洁,但是功能也比较弱。想象一下,假如我们有这样的需求:基于一个存在的 error 再生成一个 error,需要怎么做呢?这就是错误嵌套。
这种需求是存在的,比如调用一个函数,返回了一个错误信息 error,在不想丢失这个 error 的情况下,又想添加一些额外信息返回新的 error。这时候,我们首先想到的应该是自定义一个 struct,如下面的代码所示:
这个结构体有两个字段,其中 error 类型的 err 字段用于存放已存在的 error,string 类型的 msg 字段用于存放新的错误信息,这种方式就是 error 的嵌套 。
现在让 MyError 这个 struct 实现 error 接口,然后在初始化 MyError 的时候传递存在的 error 和新的错误信息,如下面的代码所示:
func (e *MyError) Error() string {
return e.err.Error() + e.msg
}
func main() {
//err是一个存在的错误,可以从另外一个函数返回
newErr := MyError{err, "数据上传问题"}
}
这种方式可以满足我们的需求,但是非常烦琐,因为既要定义新的类型还要实现 error 接口。所以从 Go 语言 1.13 版本开始,Go 标准库新增了 Error Wrapping 功能,让我们可以基于一个存在的 error 生成新的 error,并且可以保留原 error 信息,如下面的代码所示:
_ ch07/main.go _
Go 语言没有提供 Wrap 函数,而是扩展了 fmt.Errorf 函数,然后加了一个 %w,通过这种方式,便可以生成 wrapping error。
errors.Unwrap 函数¶
既然 error 可以包裹嵌套生成一个新的 error,那么也可以被解开,即通过 errors.Unwrap 函数得到被嵌套的 error。
Go 语言提供了 errors.Unwrap 用于获取被嵌套的 error,比如以上例子中的错误变量 w ,就可以对它进行 unwrap,获取被嵌套的原始错误 e。
下面我们运行以下代码:
可以看到这样的信息,即“原始错误 e”。
errors.Is 函数¶
有了 Error Wrapping 后,你会发现原来用的判断两个 error 是不是同一个 error 的方法失效了,比如 Go 语言标准库经常用到的如下代码中的方式:
为什么会出现这种情况呢?由于 Go 语言的 Error Wrapping 功能,令人不知道返回的 err 是否被嵌套,又嵌套了几层?
于是 Go 语言为我们提供了 errors.Is 函数,用来判断两个 error 是否是同一个,如下所示:
以上就是errors.Is 函数的定义,可以解释为:
- 如果 err 和 target 是同一个,那么返回 true。
- 如果 err 是一个 wrapping error,target 也包含在这个嵌套 error 链中的话,也返回 true。
可以简单地概括为,两个 error 相等或 err 包含 target 的情况下返回 true,其余返回 false。我们可以用上面的示例判断错误 w 中是否包含错误 e,试试运行下面的代码,来看打印的结果是不是 true。
errors.As 函数¶
同样的原因,有了 error 嵌套后,error 断言也不能用了,因为你不知道一个 error 是否被嵌套,又嵌套了几层。所以 Go 语言为解决这个问题提供了 errors.As 函数,比如前面 error 断言的例子,可以使用 errors.As 函数重写,效果是一样的,如下面的代码所示:
_ ch07/main.go _
var cm *commonError
if errors.As(err,&cm){
fmt.Println("错误代码为:",cm.errorCode,",错误信息为:",cm.errorMsg)
} else {
fmt.Println(sum)
}
所以在 Go 语言提供的 Error Wrapping 能力下,我们写的代码要尽可能地使用 Is、As 这些函数做判断和转换。
Deferred 函数¶
在一个自定义函数中,你打开了一个文件,然后需要关闭它以释放资源。不管你的代码执行了多少分支,是否出现了错误,文件是一定要关闭的,这样才能保证资源的释放。
如果这个事情由开发人员来做,随着业务逻辑的复杂会变得非常麻烦,而且还有可能会忘记关闭。基于这种情况,Go 语言为我们提供了 defer 函数,可以保证文件关闭后一定会被执行,不管你自定义的函数出现异常还是错误。
下面的代码是 Go 语言标准包 ioutil 中的 ReadFile 函数,它需要打开一个文件,然后通过 defer 关键字确保在 ReadFile 函数执行结束后,f.Close() 方法被执行,这样文件的资源才一定会释放。
func ReadFile(filename string) ([]byte, error) {
f, err := os.Open(filename)
if err != nil {
return nil, err
}
defer f.Close()
//省略无关代码
return readAll(f, n)
}
defer 关键字用于修饰一个函数或者方法,使得该函数或者方法在返回前才会执行,也就说被延迟,但又可以保证一定会执行。
以上面的 ReadFile 函数为例,被 defer 修饰的 f.Close 方法延迟执行,也就是说会先执行 readAll(f, n),然后在整个 ReadFile 函数 return 之前执行 f.Close 方法。
defer 语句常被用于成对的操作,如文件的打开和关闭,加锁和释放锁,连接的建立和断开等。不管多么复杂的操作,都可以保证资源被正确地释放。
Panic 异常¶
Go 语言是一门静态的强类型语言,很多问题都尽可能地在编译时捕获,但是有一些只能在运行时检查,比如数组越界访问、不相同的类型强制转换等,这类运行时的问题会引起 panic 异常。
除了运行时可以产生 panic 外,我们自己也可以抛出 panic 异常。假设我需要连接 MySQL 数据库,可以写一个连接 MySQL 的函数connectMySQL,如下面的代码所示:
_ ch07/main.go _
在 connectMySQL 函数中,如果 ip 为空会直接抛出 panic 异常。这种逻辑是正确的,因为数据库无法连接成功的话,整个程序运行起来也没有意义,所以就抛出 panic 终止程序的运行。
panic 是 Go 语言内置的函数,可以接受 interface{} 类型的参数,也就是任何类型的值都可以传递给 panic 函数,如下所示:
小提示:interface{} 是空接口的意思,在 Go 语言中代表任意类型。
panic 异常是一种非常严重的情况,会让程序中断运行,使程序崩溃,所以 如果是不影响程序运行的错误,不要使用 panic,使用普通错误 error 即可。
Recover 捕获 Panic 异常¶
通常情况下,我们不对 panic 异常做任何处理,因为既然它是影响程序运行的异常,就让它直接崩溃即可。但是也的确有一些特例,比如在程序崩溃前做一些资源释放的处理,这时候就需要从 panic 异常中恢复,才能完成处理。
在 Go 语言中,可以通过内置的 recover 函数恢复 panic 异常。因为在程序 panic 异常崩溃的时候,只有被 defer 修饰的函数才能被执行,所以 recover 函数要结合 defer 关键字使用才能生效。
下面的示例是通过 defer 关键字 + 匿名函数 + recover 函数从 panic 异常中恢复的方式。
_ ch07/main.go _
func main() {
defer func() {
if p:=recover();p!=nil{
fmt.Println(p)
}
}()
connectMySQL("","root","123456")
}
运行这个代码,可以看到如下的打印输出,这证明 recover 函数成功捕获了 panic 异常。
通过这个输出的结果也可以发现,recover 函数返回的值就是通过 panic 函数传递的参数值。
总结¶
这节课主要讲了 Go 语言的错误处理机制,包括 error、defer、panic 等。在 error、panic 这两种错误机制中,Go 语言更提倡 error 这种轻量错误,而不是 panic。